B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS)

Subject: Chemistry

Course: DSE-1

(Advanced Physical Chemistry)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) Name the different types of Bravais lattices that can be obtained for a tetragonal crystal. Find the number of atoms per unit cell for a body-centred tetragonal crystal.
- (b) Mention two differences between tetrahedral void and octahedral void.
- (c) Define microcanonical ensemble. What type of thermodynamic system is defined by it?
- (d) Show that the barometric pressure distribution is a special case of the Boltzman distribution.
- (e) The bond moment of H₂S molecule is 1·11D and the bond angle is 97°. Find the dipole moment of H₂S molecule.
- (f) Distinguish between thermoplastic polymer and thermosetting polymer.
- (g) Why does molar polarization of polar molecule decreases at high frequencies?
- (h) Define vibrational temperature of a system. What is its unit?

2. Answer any two questions:

 $5 \times 2 = 10$

- (a) (i) The molar volume of KCl is 1·3 times that the NaCl. The glancing angle for the 1st order Bragg reflection from the (200) plane of NaCl is 5·9°. Find the glancing angle from the (200) plane of KCl.
 - (ii) Define partition function for a degenerate system. Find the significance of it at T = 0K.

3+2

- (b) (i) Calculate the percentage of space occupied in an atomic BCC lattice.
 - (ii) For macromolecules, show that $\overline{M}_w \ge \overline{M}_n$.

3+2

- (c) (i) Entropy is additive whereas thermodynamic probability is multiplicative. Hence, arrive at the Planck's relation $S = k \ln W$.
 - (ii) Find the number of microstates for the distribution of 4 indistinguishable particles in 5 boxes.
- (d) (i) For the distribution of N distinguishable molecules in different energy levels, where n_i molecules present in energy level ϵ_i (non-degenerate), show that $S = -Nk\sum P_i \ln P_i$, where P_i is the probability of finding the molecules in the ith states.
 - (ii) Show a plot of $C_P/_T$ vs. T in accordance with the Third law. What is the meaning of area under this curve?

3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Derive the Bragg's equation of diffraction of X-ray on a crystal. State the condition for the validity of this equation.
 - (ii) In X-ray diffraction, KCl shows SC pattern though it is a FCC lattice. —Comment.
 - (iii) For equispaced energy levels, show that the population in the middle level is the geometric mean of the populations of its immediate upper and lower level.
 - (iv) Write down the Clausius–Mossotti equation for a polar molecule explaining the terms involved within it. Find the unit of Molar polarization from this equation. 3+2+3+2
- (b) (i) Find an expression of Helmholtz's function in terms of the molecular partition function.
 - (ii) Derive an expression of translational partition function. Hence show that $U_{trans} = \frac{3}{2}RT$ per mole for an ideal gas.
 - (iii) Aluminium (At. wt. 27, density 2.69 g cm⁻³) crystallises with FCC lattice. What is the distance of closest approach of Al-atoms in the crystal.
 3+4+3
- (c) (i) Find an expression of vibrational partition function in case of a Harmonic oscillator.
 - (ii) If the molecular partition function Q of a gaseous system is given by $Q = \exp(A + B \ln T)$, where A and B are constants; then find the expression for the molar heat capacity (C_V) of the gas. Hence show that for a monoatomic ideal gas, $B = \frac{3}{2}N_A$, where $N_A = \text{Avogadro No. Given } U = NkT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_{V,N}$.
 - (iii) The dipole moment of chlorobenzene is 1.55 D. The bond distance of C_6H_5 Cl is 2.8 Å. Calculate the ionic character. 3+(3+2)+2
- (d) (i) Find the partition function for two-level system, where the lower state (at energy 0) is non-degenerate and the upper state is doubly degenerate (at energy ϵ). Take $\epsilon = 2kT$.
 - (ii) What is Gibbs paradox? State the theoretical justification by which the paradox is resolved.
 - (iii) A solid containing 4 number of atoms, melt. What will be its effect in the partition function?
 - (iv) Find the integrated rate equation of a condensation polymerization reaction in presence of a mineral acid in terms of extent of polymerization. 2+3+2+3

3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Derive the Bragg's equation of diffraction of X-ray on a crystal. State the condition for the validity of this equation.
 - (ii) In X-ray diffraction, KCl shows SC pattern though it is a FCC lattice. —Comment.
 - (iii) For equispaced energy levels, show that the population in the middle level is the geometric mean of the populations of its immediate upper and lower level.
 - (iv) Write down the Clausius–Mossotti equation for a polar molecule explaining the terms involved within it. Find the unit of Molar polarization from this equation.
 3+2+3+2
- (b) (i) Find an expression of Helmholtz's function in terms of the molecular partition function.
 - (ii) Derive an expression of translational partition function. Hence show that $U_{trans} = \frac{3}{2}RT$ per mole for an ideal gas.
 - (iii) Aluminium (At. wt. 27, density 2.69 g cm⁻³) crystallises with FCC lattice. What is the distance of closest approach of Al-atoms in the crystal.
- (c) (i) Find an expression of vibrational partition function in case of a Harmonic oscillator.
 - (ii) If the molecular partition function Q of a gaseous system is given by $Q = \exp(A + B \ln T)$, where A and B are constants; then find the expression for the molar heat capacity (C_V) of the gas. Hence show that for a monoatomic ideal gas, $B = \frac{3}{2}N_A$, where $N_A = A \times Q$ and $Q = A \times Q$ where $Q = A \times Q$ and $Q = A \times Q$ are the molar heat capacity $Q = A \times Q$.
 - (iii) The dipole moment of chlorobenzene is 1.55 D. The bond distance of C₆H₅ C1 is 3+(3+2)+2
- (d) (i) Find the partition function for two-level system, where the lower state (at energy 0) is non-degenerate and the upper state is doubly degenerate (at energy ε). Take ε = 2kT.
 - (ii) What is Gibbs paradox? State the theoretical justification by which the paradox is resolved.
 - (iii) A solid containing 4 number of atoms, melt. What will be its effect in the partition function?
 - (iv) Find the integrated rate equation of a condensation polymerization reaction in presence of a mineral acid in terms of extent of polymerization.

 2+3+2+3